Graph-Based Translation Via Graph Segmentation

نویسندگان

  • Liangyou Li
  • Andy Way
  • Qun Liu
چکیده

One major drawback of phrase-based translation is that it segments an input sentence into continuous phrases. To support linguistically informed source discontinuity, in this paper we construct graphs which combine bigram and dependency relations and propose a graph-based translation model. The model segments an input graph into connected subgraphs, each of which may cover a discontinuous phrase. We use beam search to combine translations of each subgraph left-to-right to produce a complete translation. Experiments on Chinese–English and German– English tasks show that our system is significantly better than the phrase-based model by up to +1.5/+0.5 BLEU scores. By explicitly modeling the graph segmentation, our system obtains further improvement, especially on German–English.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory

Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...

متن کامل

A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...

متن کامل

Context-Aware Graph Segmentation for Graph-Based Translation

In this paper, we present an improved graph-based translation model which segments an input graph into node-induced subgraphs by taking source context into consideration. Translations are generated by combining subgraph translations leftto-right using beam search. Experiments on Chinese–English and German–English demonstrate that the context-aware segmentation significantly improves the baselin...

متن کامل

An Optimal Approach to Local and Global Text Coherence Evaluation Combining Entity-based, Graph-based and Entropy-based Approaches

Text coherence evaluation becomes a vital and lovely task in Natural Language Processing subfields, such as text summarization, question answering, text generation and machine translation. Existing methods like entity-based and graph-based models are engaging with nouns and noun phrases change role in sequential sentences within short part of a text. They even have limitations in global coheren...

متن کامل

Toward Better Chinese Word Segmentation for SMT via Bilingual Constraints

This study investigates on building a better Chinese word segmentation model for statistical machine translation. It aims at leveraging word boundary information, automatically learned by bilingual character-based alignments, to induce a preferable segmentation model. We propose dealing with the induced word boundaries as soft constraints to bias the continuous learning of a supervised CRFs mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016